Practical use and utility of fluorescence in situ hybridization in the pathological diagnosis of soft tissue and bone tumors.

During routine pathological examination, fluorescence in situ hybridization (FISH) plays a significant role in the genetic analysis of samples. FISH can detect genetic abnormalities such as chromosomal translocations, gene amplifications, and deletions in formalin-fixed, paraffin-embedded (FFPE) specimens. Due to its practical advantages, FISH is already used in many pathology laboratories. It is especially useful for the diagnosis of translocation-related sarcomas (TRSs), which comprise about 25% of soft tissue sarcomas. Because TRSs have specific chimeric genes derived from characteristic chromosomal translocations, their diagnosis would not be possible without FISH. FISH significantly contributes to the genetic confirmation of TRS. Analysis using next-generation sequencing (NGS), the latest powerful method for comprehensive genomic analysis, has recently revealed many kinds of chromosomal translocations in various TRSs. We often use experimental results to create custom probes for FISH and have applied NOCA2 split probes and CIC split, CIC-FOXO4 fusion probes to the pathological diagnosis of soft tissue angiofibroma and CIC-rearranged sarcoma, respectively. Some chimeric fusions detected by NGS induce the expression of related proteins and their detection using immunohistochemistry is beneficial for pathological diagnosis. We previously identified characteristic FOSB expression in pseudomyogenic hemangioendothelioma (PHE) with a specific SERPINE1-FOSB fusion, revealing the usefulness of FOSB immunohistochemistry in the differential diagnosis of PHE and its mimics. Finally, we participated in a central review of a clinical trial of trabectedin monotherapy. We guaranteed an accurate diagnosis by using FISH and genetic confirmation to select appropriate TRS patients and thereby confirm the accuracy of the patient enrollment of the clinical trial. FISH is an essential tool for the pathological diagnosis of soft tissue and bone tumors. It can detect various genetic abnormalities in an “in situ” fashion using FFPE specimens on glass slides during routine examination. It is also an excellent tool for translating the latest experimental findings to practical use in routine pathological diagnosis. Further instrumental improvements in FISH will help it to become the universal method for the genetic analysis of pathological diagnoses.

Be the first to comment

Leave a Reply

Your email address will not be published.