Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae.

Related Articles

Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae.

BMC Evol Biol. 2017 Jun 16;17(1):141

Authors: Bernhardt N, Brassac J, Kilian B, Blattner FR

Abstract
BACKGROUND: Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe’s evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing.
RESULTS: The read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago.
CONCLUSIONS: The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.

PMID: 28622761 [PubMed – in process]

Be the first to comment

Leave a Reply

Your email address will not be published.


*