The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain.

Related Articles

The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain.

Genes (Basel). 2018 May 22;9(5):

Authors: Oniciuc EA, Likotrafiti E, Alvarez-Molina A, Prieto M, Santos JA, Alvarez-Ordóñez A

Abstract
Antimicrobial resistance (AMR) surveillance is a critical step within risk assessment schemes, as it is the basis for informing global strategies, monitoring the effectiveness of public health interventions, and detecting new trends and emerging threats linked to food. Surveillance of AMR is currently based on the isolation of indicator microorganisms and the phenotypic characterization of clinical, environmental and food strains isolated. However, this approach provides very limited information on the mechanisms driving AMR or on the presence or spread of AMR genes throughout the food chain. Whole-genome sequencing (WGS) of bacterial pathogens has shown potential for epidemiological surveillance, outbreak detection, and infection control. In addition, whole metagenome sequencing (WMS) allows for the culture-independent analysis of complex microbial communities, providing useful information on AMR genes occurrence. Both technologies can assist the tracking of AMR genes and mobile genetic elements, providing the necessary information for the implementation of quantitative risk assessments and allowing for the identification of hotspots and routes of transmission of AMR across the food chain. This review article summarizes the information currently available on the use of WGS and WMS for surveillance of AMR in foodborne pathogenic bacteria and food-related samples and discusses future needs that will have to be considered for the routine implementation of these next-generation sequencing methodologies with this aim. In particular, methodological constraints that impede the use at a global scale of these high-throughput sequencing (HTS) technologies are identified, and the standardization of methods and protocols is suggested as a measure to upgrade HTS-based AMR surveillance schemes.

PMID: 29789467 [PubMed]

Be the first to comment

Leave a Reply

Your email address will not be published.


*